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Abstract

We describe an architecture for the runtime environment for parallel applications as
prelude to describing how parallel application might interface to their environment in a
portable way. We propose extensions to the Message-Passing Interface (MPI) Standard
that provide for dynamic process management, including spawning of new processes
by a running application and connection to existing processes to support client/server
applications. Such extensions are needed if more of the runtime environment for parallel
programs is to be accessible to MPI programs or to be themselves written using MPI.
The extensions proposed here are motivated by real applications and fit cleanly with
existing concepts of MPI. No changes to the existing MPI Standard are proposed, thus
all present MPI programs will run unchanged.

1 Introduction

During 1993 and 1994 a group composed of parallel computer vendors, library writers, and
application scientists created a standard message passing library interface specification [1,
2, 6]. This group, which called itself the MPI Forum, chose to propose a standard only
for the message-passing library, attempting to unify and subsume the plethora of existing
libraries. They deliberately and explicitly did not propose a standard for how processes
would be created in the first place, only for how they would communicate once they were
created.

MPI users have asked that the Forum reconsider this issue for several reasons. The
first is that workstation network users migrating from PVM to MPI are accustomed to
using PVM’s capabilities [4] for process management. (On the other hand, dynamic process
creation is often difficult or impossible on MPP’s, limiting the portability of such PVM
programs.) A second reason is that important classes of message-passing applications,
such as client-server systems and task-farming jobs, require dynamic process control. A
third is that with such extensions it would be possible to write major parts of the parallel
programming environment in MPI itself.

∗This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract W-31-109-Eng-38.
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In this paper we describe an architecture of the system runtime environment of a par-
allel program that separates the functions of job scheduler, process manager, and message-
passing system. We show how the existing MPI specification, which can serve handily as
a complete message-passing system, can be extended in a natural way to include an appli-
cation interface to the system’s job scheduler and process manager, or even to write those
functions if they are not already provided. (A typical difference between an MPP and a
workstation network is that the MPP comes with a built-in scheduler and process manager,
whereas the workstation network does not. We will make this distinction clearer in Sec-
tion 2.) The extensions are straightforward and fit will into the MPI framework, reusing
several of its existing concepts and functions.

The paper is organized as follows. In Section 2 we describe in detail what we mean
by each of the components of the parallel runtime environment—job scheduler, process
manager, and message-passing system—and give several examples of complete systems with
very different components. Section 3 contains the basic principles behind the design of the
extensions and the definitions of the extensions themselves. Section 4 contains descriptions
of several complete applications that make use of the extensions described here. In the
conclusion we address issues of implementation status.

We do not provide C or Fortran bindings in this document, instead using the same
definition style used in the MPI standard itself.

2 Runtime Environments of Parallel Programs

A parallel program does not execute in isolation; it must have computing and other resources
allocated to it, its processes must be started and managed, and (presumably) its processes
must communicate. MPI standardizes the communication aspect, but says nothing about
the other aspects of the execution environment.

One reason that the MPI forum chose to (temporarily) ignore these aspects is that they
vary so greatly in current parallel systems. In order to motivate the structure of the MPI
extensions that we are going to propose in Section 3, we describe here the major components
of a parallel runtime environment and give a number of examples of various instantiations
of this structure.

2.1 Components

One way to decompose the complex runtime environment at a high level on today’s parallel
systems is to separate out the functions of job scheduler, process manager, message-passing
library, and security.

Job Scheduler By the job scheduler we mean that part of the system that manages
resources. It decides which processors will be allocated to the parallel job when it runs and
when it will run. In some environments it is represented by a component of a sophisticated
batch queueing system; in others it is represented by the user himself, who can start jobs
whenever and wherever he likes on a network.
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Process Manager Once processors have been allocated to a program, user processes
must be started on those processors, and managed after startup. By “managed” we mean
that signals must be deliverable, that stdin, stdout, and stderr must be handled in some
reasonable way, and that orderly termination can be guaranteed. A minimal example is
rsh, which starts processes and reroutes stdin, stdout, and stderr back to the originating
process. A more complex example is given by poe on the IBM SP2 or prun on the Meiko
CS-2, which start processes on processors given to them by the job scheduler and manage
them until they are finished.

In some cases the situation is muddied by combining the functions of job scheduler and
process manager in one piece of software. Examples of this approach are the batch queueing
systems such as Condor, DQS, and LoadLeveler. Nonetheless, it will be convenient to
consider them separately, since although they must communicate with one another, they
are separate functions that can be independently modified.

Message-Passing Library By the message-passing library we mean the library used
by the application program for its interprocess communication. Programs containing only
calls to a message-passing library can be extremely portable, since they fit cleanly into a
variety of job scheduler–process manager environments. MPI defines a standard interface
for message-passing libraries.

Security An important function of the runtime environment is security. The security
system ensures that the job scheduler does not allocate resources to users or programs
that should not have them, that the process manager does indeed control the processes
that it starts, and that the message-passing library delivers messages only to their proper
destinations. We will propose some minimal features designed to enhance security.

     Job
Scheduler

 Process
Manager

Application
   Program

User

Figure 1: Structure of the Runtime Environment

These components need to communicate among themselves and with the user, but the
timing and the paths of such communication vary from one environment to another. Some
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of the paths are illustrated in Figure 1.

For example, the job scheduler and the process manager must communicate so that the
process manager can know where to start the user processes. The process manager and
the message-passing library communicate in order for the message-passing library to know
where the processes are and how to contact them. The user may interact only with the
job scheduler (as in the case of LoadLeveler, an IBM scheduler), directly with the process
manager (poe, prun), or only with the application program (p4). Finally, it may be useful
for the application program to dynamically request more resources from the job scheduler.

2.2 Examples of Runtime Environments

To illustrate how the above framework allows us to describe a wide variety of actual systems,
we give here some examples.

ANL’s SP2 The SP2 at Argonne National Laboratory is scheduled by a locally written
job scheduler quite different from the LoadLeveler product delivered with the SP2. It ensures
that only one user has access to any SP node at a time and requires users to provide time
limits for their jobs so that the machine can be tightly scheduled. Users submit scripts to
the scheduler, which sets up calls to poe, IBM’s process manager on the SP. The poe system
interacts with a variety of message-passing libraries, including two based on MPI.

The Meiko CS-2 at LLNL Job scheduling is done by the user himself who inspects the
state of the machine interactively and claims a partition with a fixed number of processors.
He then invokes the process manager with the prun command, specifying exactly how many
processes he wishes to execute in the given partition. prun starts processes that use Meiko’s
implementation of Intel’s NX library, or MPI programs that run on top of this library.

Paragon at Caltech There are three schedulers for the Paragons operated by the CSCC
at Caltech. The first two are for interactive use. Programs may be started by simply giving
the number of nodes as an argument or by creating a named partition of a particular shape
and then running within that partition. System calls to create partitions and run programs
are provided. Partitions may be gang-scheduled.

The other is the NQS batch system, which is used during the production shift (evenings
and weekends). Users submit jobs to a particular queue; NQS allocates the necessary
resources and starts jobs. The jobs are usually shell scripts because they start in the user’s
home directory; a script is necessary to run a program in a different directory.

Workstation network managed by DQS DQS [5] is a batch scheduler for workstation
networks developed at Florida State University. Users submit jobs to it and it allocates the
necessary resources and starts jobs. It has an interface to p4 that allows it to start parallel
jobs written using p4 but not (currently) any other library. Similarly, Condor, a batch
scheduler, can start PVM jobs on the network it manages at the University of Wisconsin,
but no other parallel programs.
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Basic workstation network with PVM One reason for PVM’s popularity is that it can
be viewed as a completely self-contained system that supplies its own process management
and can be used to implement a job scheduler as well. On systems that have neither of these
functions pre-installed, PVM can provide a complete solution. A user creates a “virtual
machine” by starting “daemons” on an assortment of machines and then schedules jobs to
run on it and manages his processes with the help of the daemons. The virtual machine
itself can be reconfigured from inside the user program. A difficulty with this approach
is that the user is assumed to have the necessary permissions to execute such functions.
This may be the case on a workstation network, but seldom on an MPP. Conflicts between
existing process managers and PVM can inhibit the portability (to MPP’s) of self-contained
programs that assume all functionality will be provided by PVM.

Workstation network with CARMI The Condor system at the University of Wis-
consin has been an early progenitor of dynamic process- management systems. A recent,
sophisticated, related system is CARMI, described in [7]. It currently supports PVM ap-
plication programs.

2.3 Applications Requiring Direct Communication with the Runtime Sys-
tem

The existing MPI specification is adequate for most parallel applications. In these ap-
plications, the job scheduler and process manager, whether simple or elaborate, allocate
resources and manage user processes without interacting with the application program. In
other applications, however, it is necessary that the user level of the application communi-
cate with the job scheduler and process manager. Here we describe three broad classes of
such applications. In Section 4 we will give concrete examples of each of these classes.

Task Farming By a “task farm” application we mean a program that manages the exe-
cution of a set of other, possibly sequential, programs. This situation often arises when one
wants to run the same sequential program many times with varying input data. We call
each invocation of the sequential program a task. It is often simplest to “parallelize” the
existing sequential program by writing a parallel “harness” program that in turn devotes a
separate, transient process to each task. When one task finishes, a new process is started
to execute the next one. Even if the resources allocated to the job are fixed, the “harness”
process must interact frequently with the process manager (even if this is just rsh, to start
the new processes with the new input data). In many cases this harness can be written in
a simple scripting language like csh or perl, but some users prefer to use Fortran or C.

Dynamic number of processes in parallel job The program wishes to decide inside
the program to adjust the number of processes to fit the size of the problem. Furthermore,
it may continue to add and subtract processes during the computation to fit separate phases
of the computation, some of which may be more parallel than others. In order to do this, the
application program will have to interact with the job scheduler (however it is implemented)
to request and acquire or return computation resources. It will also have to interact with the
process manager to request that process be started, and in order to make the new processes
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known to the message-passing library so that the larger (or smaller) group of processes can
communicate.

Client/Server This situation is the opposite of the situations above, where processes
come and go upon request. In the client/server model, one set of processes is relatively
permanent (the server, which we assume here is a parallel program). At unpredictable
times, another (possibly parallel) program (the client) begins execution and must establish
communication with the server. In this case the process manager must provide a way for
the client to locate the server and communicate to the message-passing library that it must
now support communications with a new collection of processes.

It is currently possible to write the parallel clients and servers in MPI, but because
MPI does not provide the necessary interfaces between the application program and the job
scheduler or process manager, other nonportable, machine specific libraries must be called
in order for the client and server to communicate with one another. On the other hand,
MPI does contain several features that make it relatively easy to add such interfaces, and
we propose both a simple interface and a more complex but flexible one.

3 Extending MPI for Process Management

In this section we will first describe requirements for the interface which influence some of
the decisions. Then we will (finally) propose a set of MPI extensions that will meet the
requirements. Note that we think of ourselves as providing an interface to existing job
scheduling and process management systems. If they do not exist, then we may want to be
able to write them in MPI. Some proposals for spawning new processes in an “MPI way”
have previously been made in [3], [9] and [6]. Our proposals here offer considerably more
functionality and flexibility.

3.1 Requirements

Of course the most basic requirement is that we be able to write portable applications
in the above classes, that can run in a variety of job scheduling — process management
environments. In addition, we would like our interface to have a number of other properties.

Determinism The semantics of dynamic process creation must be carefully designed to
avoid race conditions. In MPI, every process is a member of some communicator; when
we allow MPI to create or destroy processes, all of the communicators that that process
belongs to change. In order to keep collective operations on communicators meaningful
(for example, what does a reduction mean when a process joins the reduction during the
operation; for that matter, how is “during” defined), all changes to communicators are
collective operations. In PVM terms, we will not allow a new process to join a group
while a collective operation over that group is in progress. (Error handling is dealt with
separately.)
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Scalability and performance It must be possible to deal with large numbers of pro-
cesses by exploiting potential scalability in the job scheduler or process manager. In addi-
tion, since each of the steps of allocating resources and starting processes can be very time
consuming, we allow each of these steps to be non-blocking so that other work can take
place during these steps.

Economy We would like to take advantage of MPI’s rich set of functions for dealing with
asynchronicity, and avoid introducing new objects or functions if it can be avoided.

Scope It should be possible to create and manage non-MPI jobs from MPI. This allows
MPI to be used to implement parallel resource managers and job managers.

MPI’s current design makes it far easier to meet these requirements than for other
systems to do so. As will be seen in the next section, we will be able to eliminate race
conditions by using MPI’s communicators to encapsulate the collective act of changing the
number of processes in a group. By adding new variants of the existing MPI Request object,
we will be able to take advantage of MPI’s extensive set of functions for testing and waiting
on numbers of requests and thus add a rich collection of non-blocking operations for process
management.

3.2 MPI Extensions

We assume that reader is familiar with the MPI specification, particularly communica-
tors (both intra and inter), persistent requests, and the family of MPI Start, MPI Test and
MPI Wait operations.

The MPI extensions we need will be dictated by the view we have taken of the runtime
environment as consisting of a job scheduler, process manager, and communication library.
To consider client-server applications we must also consider existing running parallel jobs
as part of the environment as well.

We will first present a very simple interface that combines access to the job scheduler
and process manager, yet provides for at least one kind of dynamic process control and
for some client-server applications. These will be straightforward, blocking, communicator-
based operations. Then we will show how increased flexibility and efficiency can be obtained
by breaking these into component operations, which are non-blocking and operate directly
on dynamic processes represented by a new variety of MPI Request object.

3.2.1 MPI Inter-communicators

Since inter-communicators are sometimes thought of as one of the “exotic” features of
MPI, in this section we briefly remind the reader of the main features of MPI’s inter-
communicators. For more on inter-communicators, see [8].

What we most typically refer to as a communicator in MPI is more precisely referred to
as an intra-communicator. It encapsulates a context and a single group of processes, and all
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processes mentioned in communication operations that use this communicator are referred
to by their rank in the group associated with the communicator.

An inter-communicator encapsulates a context and two groups of processes, referred
to (from the point of view of a process belonging to the inter-communicator’s local group)
as the local group and the remote group. The local group is the “normal” group of the
(inter-)communicator, whose size is returned by MPI COMM SIZE. The remote group is
another group of processes, whose size is returned by MPI COMM REMOTE SIZE. When a
process is referred to by rank in an communication operation using the inter-communicator,
that process is the one with that rank in the remote group. Thus intercommunicators are
used precisely when we want to communicate between processes in different groups, using
their ranks in their respective groups to identify them.

The two groups can easily be “joined” into an intra-communicator whose (only) group
is the union of the two groups, by the collective operation MPI INTERCOMM MERGE.

We will use inter-communicators as a way to manage the distinction between two groups
of processes when one group collectively creates the other group (spawning) or else wants
to establish communication with an existing group (client-server). Details are given in the
following sections.

3.2.2 Simple Interface to Process Manager

In this section we provide high-level functions both for process creation and for client-
server requirements that are the easiest to use. They encapsulate interactions with all three
components of the runtime environment at once, and are blocking calls. These provide a
useful subset of operations; routines that provide more control and flexibility are described
later.

The following is the simplest way to create new processes, and is used when one wants
simply to expand the number of processes in a communicator. It makes several simplifying
assumptions: that the existing processes are all executing the same executable on machines
of the same architecture, and that the new processes do not need any new arguments. That
is, this call is for expanding the number of processes in an SPMD computation. It assumes
that the job scheduler can identify processors to run the new processes on without help
from the user program.

MPI COMM MODIFY(oldcomm, count, newcomm)

IN oldcomm communicator of spawning group
IN count number of processes to change by (positive or nega-

tive)
OUT newcomm new intra-communicator with larger number of pro-

cesses

This operation is collective over oldcomm. If count is positive, the spawned processes
come into existence with an MPI COMM WORLD that includes both the processes in old-
comm and the count processes being spawned by this call. In newcomm the new processes
are added with ranks higher than those of the original processes, or subtracted from the
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processes with the highest ranks. This call does not require any understanding of inter-
communicators.

A process can determine if it was created by testing MPI COMM PARENT against
MPI COMM NULL. The created processes begin execution at the beginning of their main
program, just as if they had been started by the user.

The following function is the next-easiest way to create new processes, and is most like
the PVM routine pvm_spawn. It starts the same executable with the same argument list on a
set of processors. It is a collective operation over the processes in the group associated with
oldcomm, and returns an inter-communicator newcomm, which has the new processes as the
remote group. If an expanded communicator is desired, an ordinary intra-communicator
containing all processes can then be constructed using MPI INTERCOMM MERGE. Only one
of the processes in oldcomm must supply the arguments that describe the new processes;
that process is designated by root.

MPI SPAWN(oldcomm, root, arch type, count, array of names, executable, argvector, flag,
newcomm)

IN oldcomm communicator of spawning group
IN root rank of process supplying following arguments
IN arch type architecture type of machine to spawn on
IN count number of processes to spawn (int)
IN array of names array of hostnames (array of strings)
IN executable executable file for new processes to execute (string)
IN argvector arguments to be passed to new processes (array of

strings)
IN flag options (int)
OUT newcomm new inter-communicator including new processes as

the remote group

The spawned processes are created with MPI COMM WORLD consisting of the pro-
cesses spawned with this call, and in addition they have a predefined inter-communicator
MPI COMM PARENT, in which the remote group consists of the spawning processes. The
call blocks until all processes in oldcomm have called MPI Spawn and all the spawned pro-
cesses have called MPI INIT, after which communication is possible. (We treat spawning of
non-MPI processes below.) Note that this means that MPI COMM WORLD is different on
the spawners and spawnees. Also note that by using MPI COMM SELF, a single process can
create many others; this is useful both for master-slave programs and for dynamic sizing of
parallel jobs from a single initial process. This function is similar to the one described in [9],
but here the arguments are made explicit instead of being combined in a single string. In
the case where job-scheduler-dependent information must be supplied, we do use a string,
in the more flexible MPI IALLOCATE described in Section 2.1. The array of names is an
implementation-defined string that defines a particular processor. The value * specifies a
processor of the same architecture type as given by the arch type argument.

The arch type is an implementation-defined string that defines a particular architecture.
Two processors have the same architecture if the can run the same executable. The value *
for architecture allows any architecture (this requires executables that can execute on any
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architecture, or executable names that can be parameterized by architecture). This string
is significant only if array of names contains one or more entries with the value *.

For client-server applications, we propose the following as the simplest, blocking calls.

MPI CLIENT CONNECT(mycomm, name, newcomm)

IN mycomm communicator of the client, over which this call is col-
lective

IN name well-known name by which the server can be contacted
(string)

OUT newcomm new inter-communicator, which includes the server pro-
cesses as the remote group

MPI SERVER CONNECT(mycomm, name, newcomm)

IN mycomm communicator of the server, over which this call is
collective

IN name well-known name by which the server can be contacted
(string)

OUT newcomm new inter-communicator, which includes the client pro-
cesses as the remote group

Disconnection occurs when processes call MPI COMM FREE on the inter-communicator.

Then any process in the client group can communicate with any process in the server
group and vice versa, using the inter-communicator.

The form of the name argument has several possibilities. The most obvious is to use
the net-address:port-number format that current systems will find most straightforward.
However, in the long run, name servers of various kinds may require more flexibility.

3.2.3 New Types of MPI Requests

In the following sections, we will introduce several non-blocking operations. Rather than
introducing new versions of MPI WAIT, MPI TEST, etc., we propose to use the existing, rich
set of MPI functions. In order to allow this, we must allow an MPI Request to represent
some new kinds of requests. A general mechanism for user definition of request types was
described in [3], and our proposal here is quite similar although not identical. Because
an implementation of extensions to MPI Request provides a consistent way to implement
the functions that we propose, it is useful to provide a standard extension to MPI for
user-defined request types.

3.2.4 Interfacing to the Job Scheduler

There are at least two reasons why the high-level, simple interface is not enough. In the
first place, these operations are liable to be expensive, and so it would be nice not to have
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to block waiting for their completion while other useful work could be done. Secondly, they
encapsulate too much, combining unnecessarily interactions with both the scheduler and the
process manager. In the next few sections we break these higher-level functions into their
component parts for greater control, and make the components non-blocking. Non-blocking
operations in general return MPI Request objects.

Here we give a set of functions for interfacing directly to the job scheduler. The first one
can be used to obtain the hostnames used in a call to MPI SPAWN. Since interaction with
the job scheduler can be time-consuming, we make this a non-blocking operation, which
returns an array of requests to be waited on later. In keeping with other MPI non-blocking
operations, we call it IALLOCATE instead of ALLOCATE.

In general, this function does not start any new processes; rather, it obtains resources
from the job scheduler for use by other functions. However, we need to take into account
those job schedulers that cannot provide this function without starting processes, such as
LoadLeveler or DQS. In those cases, the executables may not be the application executables,
but rather interface processes that will create the application processes in response to one
of the process-creation functions described here (like MPI Spawn).

The following function is for resource allocation only; it does not start any processes.

MPI IALLOCATE(num requested, global js dep string, array of local js dep strings, arch type,
array of nodenames, hardness, array of requests)

IN num requested number of hosts requested
IN global js dep string special information parsed by job scheduler
IN array of local js dep strings special information parsed by job scheduler, on a per-

process basis
IN arch type architecture type of machine to spawn on
IN array of nodenames array of hostnames (array of strings)
IN hardness whether the request is hard or soft (integer)
OUT array of requests set of requests

Authentication information, if required by the job scheduler, can be supplied in the
job-scheduler-dependent string. The array of nodenames may contain wildcard indicators
(MPI ANYWHERE) to allow the job scheduler to pick the processors to be used. A hard
allocation request is required to eventually return the entire number of processors requested,
whereas a soft allocation request may complete when it can allocate some processors even
if it knows that it will not be able to satisfy the entire request. The executable files are not
specified on this call, since this is just for resource allocation. We can attach them to the
requests with the function described in the next section.

The strings containing job scheduler dependent strings are implementation defined (by
the job scheduler, not MPI!). These may contain information to be applied to all processes
(in global js dep string) and information for a particular process (in array of local js dep strings).
An example of global js dep string is gang_schedule; and example of array of local js dep strings
is

{ "large_memory",
"local_hippi" }
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The arguments arch type and array of hostnames have the same meaning as for MPI Spawn.

3.2.5 Interfacing to the Process Manager

While MPI SPAWN conveniently captures many aspects of resource allocation and process
startup in one call, we need more detailed control of these steps. Our model will be that one
calls MPI IALLOCATE to reserve processors, getting back a set of requests. These requests
can be further modified with functions we present in this section, and then actual process
startup can be accomplished with the existing MPI START or MPI STARTALL calls.

First, there are routines for setting attributes of requests that may not have been set
with MPI IALLOCATE.

MPI SET EXEC(request, executable)

IN request request (handle)
IN executable name of executable file

sets the name of the file to be executed, and

MPI SET ARGS(request, args)

IN request request (handle)
IN args array of strings

sets the command-line arguments that process will receive.

We may also need functions to extract attributes of requests, like

MPI GET NODENAME(request, hostname)

IN request request (handle)
OUT hostname the name of the host associated with the request

to retrieve the hostname that was filled in by the job scheduler for a particular request, and

MPI GET JSINFO(request, js dep info)

IN request request (handle)
OUT js dep info job-scheduler-dependent information

to retrieve special information dependent on the job scheduler being used.

Once the requests have been set up, they can be initiated with the existing MPI START
or MPI STARTALL routines,

Process requests have two stages, and we wait on both. The first stage is completed
when the process has been started. The second stage is completed when the processes exits.
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(We can think of the second stage as the MPI interface to the Process Manager’s handling
of the signal SIGCHILD). The status returned by the usual wait and test routines can be used
to determine which state has been completed. Note that this level of process management
allows us to manage non-MPI processes, since communicators are not involved. In order
to get the status, we need a routine to extract the value from the status argument to the
MPI WAIT call.

MPI GET RETURN CODE(request, code)

IN request request (handle)
OUT code exit status of process

to retrieve the exit status (from a return n or exit(n) in C or STOP n in Fortran).

If the started processes are MPI processes (that is, if they call MPI INIT), then the com-
municator that includes them can be constructed with the MPI COMM PARENT CREATE
function described below. In either case, at this stage we have allocated resources and
the processes have been started. The third component of the runtime environment is the
message-passing library. In order to communicate with these processes, we must interface
with the message-passing library. In MPI terms, this means setting up communicators.

Once the processes have been started, we may or may not wish to establish communi-
cation with them. Note that the MPI IALLOCATE/MPI START/MPI WAIT mechanism can
be used by a process manager written in MPI to manage non-MPI processes as well as MPI
processes. If the application program is creating new processes, however, it is likely that
it will want to communicate with them, via an inter-communicator. The complication is
that creation of this inter-communicator is a collective operation over all processes involved,
yet we don’t want the spawning process(es) to block if the spawned processes are not even
going to call MPI INIT. Our solution is to create a “stub” inter-communicator which will
become valid if and when the spawned processes call MPI INIT.

MPI COMM PARENT CREATE(localcomm, num requests, array of requests, intercomm)

IN localcomm communicator of the spawning processes
IN num requests number of requests in array
IN array of requests requests representing processes to be created
OUT intercomm new inter-communicator, which may become MPI COMM PARENT

in the created processes.

After MPI WAITALL indicates that all of these processes are running, the inter-communicator
is valid on the spawning side and the spawned processes have the inter-communicator
MPI COMM PARENT defined, along with the usual MPI COMM WORLD.

It is erroneous to use MPI COMM PARENT CREATE with processes that are not MPI
jobs.

We will also need to ask the process manager to deliver signals to processes, which are
represented by requests:
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MPI SIGNAL(signal, num requests, array of requests)

IN signal signal type (int)
IN num requests number of requests in array
IN array of requests requests representing processes to be signalled

It is the responsibility of an implementation to translate between signals; in other words,
a SIGINT that has value 3 on system A must be delivered as a SIGINT on system b, even if
SIGINT on system b uses the value 5 for SIGINT. If the signal can not be delivered because
there is no corresponding signal, the error code is MPI ERR INVALID SIGNAL.

Note that MPI SPAWN can be written in terms of the lower-level routines. For example,

MPI_SPAWN(comm,arch_type,num,hostnames,executable,argvecs,flag,newcomm)

can be written as (without error handling)

MPI_IALLOCATE(num,advice,(char **)0,arch_type,hostnames,MPI_HARD,requests)
for (i=0;i<num;i++) {

MPI_SET_EXEC( requests[i], executable );
MPI_SET_ARGS( requests[i], argvecs );
}

MPI_WAITALL(num,requests,statuses) /* to get processors allocated */
MPI_COMM_PARENT_CREATE(comm,num,requests,newcomm) /* get communicator */
MPI_STARTALL(num,requests) /* to start processes */
MPI_WAITALL(num,requests,statuses) /* to wait for processes to start */

3.2.6 Clients and Servers

In a previous section we described simplified, blocking calls for a client and server. In
general, just as MPI needs non-blocking message-passing operations, we need non-blocking
operations.

The new functions needed for client-server applications begin with routines needed so
that the clients can find the server. The first one is called by the server in order to announce
that it is ready to accept connections. It provides an array of requests that it can test and
wait on to tell whether a client wishes to connect. We assume here that both client and
server may be parallel programs, whose processes are already in internal communication
via a communicator. Both of the following operations are collective over the communicator
comm.
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MPI IACCEPT(comm, name, num requests, array of requests)

IN comm server’s communicator
IN name well-known name by which the server can be contacted

(string)
IN num requests number of requests in array (int)
OUT array of requests requests representing “ports” on which clients can con-

nect

The next routine is called by the client in order to make contact with the server.

MPI ICONTACT(comm, name, request)

IN comm client’s communicator
IN name well-known name by which the server can be contacted

(string)
OUT request request that is satisfied when a server accepts the con-

nection

The above are both collective, non-blocking calls, to allow each collection of processes to
overlap computation with the possibly time-consuming task of establishing the connection.

We propose building in a certain level of security into the client-server connection process
in the following way. An extra argument to MPI IACCEPT would consist of the name of a
function to be called to provide validation for the client that is attempting to connect. The
client, in an extra argument on the call to MPI ICONTACT, would provide a key that was
validated by the routine passed to MPI IACCEPT. If the key was not validated, the request
would have no effect on the requests supplied to MPI IACCEPT.

It is useful if it is not required that the name argument to the above calls be known
until execution time. The following routine provides a way for the application to request a
name, but be given a different one if the system prefers it that way.

MPI GET SERVER NAME(requested name, given name)

IN requested name name that the server would like to be known by
OUT given name name supplied by the system

In order for communication to take place, an inter-communicator must be created con-
necting the client with the server. The following routine serves this purpose.

MPI REMOTE ATTACH(oldcomm, num requests, array of requests, newcomm)

IN oldcomm communicator
IN num requests number of requests in array (int)
IN array of requests the requests representing the processes to be attached

to
IN newcomm new inter-communicator for the new processes

This operation is collective over oldcomm, and returns an inter-communicator One can think
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of this operation as very much like MPI INTERCOMM CREATE, where the remote processes
are represented by an array of requests rather than by another group.

Discussion: One option would be to combine this call with the previous ones, but
that would require that the inter-communicator being constructed be in an undefined state
between the request and the time that the requests were satisfied. Still another option would
be to have the inter-communicator returned as part of the status object on the MPI WAIT.
We have chosen to make separate the process of constructing the inter-communicator after
the MPI WAITs have been completed.

We don’t need MPI REMOTE DETACH(intercomm)

IN intercomm communicator

because its function can be accomplished with MPI COMM FREE.

The sequence of events for a sequential client contacting a parallel server might look like
this:

Client Server
------ ------

MPI_Icontact(server_name,request) MPI_Iaccept(myname,num,requests)
MPI_Wait(request,status) MPI_Waitsome(num,requests,numready,

which,statuses)
MPI_Remote_attach(comm,1,request, MPI_Remote_attach(comm,1,request[],

newcomm) newcomm)
( MPI communication in newcomm ) ( MPI communication in newcomm )
MPI_Comm_free(newcomm) MPI_Comm_free(newcomm)
MPI_Finalize() (process other requests, loop back

to accept again)
(exit)

4 Complete, Portable Applications

Dynamic sizing example. Here we give a very simple example of changing the size of
MPI COMM WORLD during the run.

#include "mpi.h"
main(int argc, char **argv)
{
int n;
MPI_Init( &argc, &argv );
if (MPI_COMM_PARENT == MPI_COMM_NULL) {

puts( "Number of processors?" );
scanf( "%d", &n );
}

MPI_Comm_modify( &MPI_COMM_WORLD, n );
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/*
Parallel code, using MPI_COMM_WORLD

*/
MPI_Finalize();
}

Task farm example. This is a fairly sophisticated example. It always keeps a request
for ten nodes outstanding, but starts jobs as soon as possible. To avoid spin-waits on
the allocation and running of jobs, it uses MPI WAITSOME on an array of requests that
includes both allocation requests and started jobs. The index alloc top gives the number
of allocation requests currently active; r top gives the total number of active requests (both
allocations and started processes).

The programs in this example are not MPI jobs; MPI is simply being used to start
and manage the programs. For simplicity, we have not included any code to decide when
the program is done or to describe the program to be run and its arguments. Note that
MPI CANCEL can be used to cancel any unneeded allocation requests.

#include "mpi.h"
main( int argc, char **argv )
{
MPI_Request r[20];
MPI_Status s[20];
int idx[20], nout;
int alloc_top, r_top;
int rc;

MPI_Iallocate( 10, (char *)0, (char **)0, "*", (char **)0, MPI_HARD, r );
alloc_top = 10;
r_top = 10;
while (!done) {

MPI_Waitsome( r_top, r, &nout, idx, s );
for (i=0; i<nout; i++) {

if (idx[i] < alloc_top) {
/* Processor is ready. Start program */
j = idx[i];
MPI_Set_exec( r[j], program_name );
MPI_Set_args( r[j], program_args );
MPI_Start( r[j] );
r[r_top] = r[j];
r[j] = r[alloc_top];
r[alloc_top] = MPI_REQUEST_NULL;
alloc_top--;
}

else {
/* Program has finished */
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j = idx[i];
MPI_Get_return_code( &s[i], &rc );
/* Make use of return code ... */
/* Note that r[j] is MPI_REQUEST_NULL already

(the wait does it) */
}

}
/* Repack request array and issue additional allocations */
j = alloc_top;
for (i=alloc_top; i<r_top; i++) {

if (r[i] != MPI_REQUEST_NULL)
r[j++] = r[i];

}
r_top = j;
MPI_Iallocate( 20 - r_top, (char *)0, (char **)0, "*", (char **)0,

MPI_HARD, r + r_top);
}

MPI_Finalize();
return 0;
}

Client-server example. This is a simple example; the server accepts only a single con-
nection at a time and serves that connection until the client requests to be disconnected.

Here is the server. It accepts a single connection and then processes data until it receives
a message with tag 1. A message with tag 0 tells the server to exit.

#include "mpi.h"
main( int argc, char **argv )
{
MPI_Comm client;
MPI_Status status;
double buf[MAX_DATA];
int again;

MPI_Init( &argc, &argv );
while (1) {

MPI_Server_connect( "cave:1234", MPI_COMM_WORLD, &client );
again = 1;
while (again) {

MPI_Recv( buf, MAX_DATA, MPI_DOUBLE, 0, MPI_ANY_TAG,
client, &status );

switch (status.tag) {
case 0: MPI_Comm_free( &client );

MPI_Finalize();
return 0;

case 1: MPI_Comm_free( &client );
again = 0;
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break;
case 2: /* do something */
...
default:

MPI_Abort( MPI_COMM_WORLD, "Unexpected message type" );
}

}
}

}

Here is the client.

#include "mpi.h"
main( int argc, char **argv )
{
MPI_Comm server;
MPI_Status status;
double buf[MAX_DATA];
int again;

MPI_Init( &argc, &argv );
MPI_Client_connect( "cave:1234", MPI_COMM_WORLD, &server );
while (!done) {

tag = 2; /* Action to perform */
MPI_Send( buf, n, MPI_DOUBLE, 0, tag, client );
/* etc */
}

MPI_Send( buf, 0, MPI_DOUBLE, 0, 1, client );
MPI_Comm_free( &client );
MPI_Finalize();
}

If the server needs to manage multiple connections at once, it can use MPI IACCEPT
instead. The client need not be changed.

5 Summary

We are currently building the necessary support for these routines into the substructure
of the MPICH implementation of MPI. This will allow us and others to experiment with
versions of the routines described here. In order to ensure that no one confuses them with
the official MPI Standard, they will appear with the MPE (instead of MPI ) prefix in
MPICH. If and when an expanded MPI specification for dynamic process management is
adopted, then MPICH will, of course, follow the Standard.
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